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ABSTRACT

In earlier work (Gelfand and Smith, 1990 and Gelfand et al,

1989) a sampling based approach using the Gibbs sampler was offered

as a means for developing marginal posterior densities for a wide

range of Bayesian problems several of which were previously

inaccessible. Our purpose here is two-fold. First we flesh out

the implementation of this approach for calculation of arbitrary

expectations of interest. Secondly we offer comparison with

perhaps the most prominent approach for calculating posterior

expectations, analytic approximation involving application of the

LaPlace method. Several illustrative examples are discussed as

well. Clear advantages for the sampling based approach emerge.

Key Words: Bayesian inference, marginal posterior expectations,
Gibbs sampler, LaPlace method, Aggregated Multinomial Model,
Variance Components Model, Normal-Linear Hierarchical Model.
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1. Introduction

An important issue in Bayesian inference is the calculation of marginal posterior

expectations. Let [Y E] denote the likelihood where Y is the observed data and e is a

vector of unobservable random parameters. Specifying a prior distribution for ( yields

the marginal posterior distribution for E denoted by [OIY]. Interest typically centers on

calculating the marginal posterior distribution itself along with associated expectations

such as E(EOi Y), E(02IY), E(OiEjIY), E(la,b(E3iIY)) where la,b denotes the indicator

function of the interval (a,b). In many applications functions of E), g(E) are of interest

e.g., Oi-Ej, Oi/O, max 0i, E(W(Y) I0) (for an appropriate W) where again the marginal

posterior distribution and associated expectations would be sought.

The technical problems encountered in attempting to carry out the required

numerical integrations to obtain these distributions and expectations have long served as

an impediment to the wider application of the Bayesian framework to real data.

In two recent papers (Gelfand and Smith, 1990, Gelfand et al 1989) the Gibbs

sampler was discussed in the context of calculation of marginal posterior densities for a

wide range of Bayesian problems several of which were previously inaccessible. The Gibbs

sampler offers conceptual simplicity and straightforward implementation avoiding

sophisticated numerical or analytic approximation expertise and associated specialist

software (as in e.g. Naylor and Smith 1982, 1988, Smith et al 1985, 1987, Shaw 1988,



Geweke 1988). The Gibbs sampler was proposed for and has been implemented for very

.igh dimensional problems LGeman and Geman. 1984) e.g. 10 or more variables. B3

comparison even a complicated Bayesian application would usually have low dimension.

Thus in our applications this sampler has proved very efficient converging remarkably

quickly. Indeed we need not compromise high dimensional integration by replacing

integration with estimation as is often done in practice.

The purpose of this note is to show that not only does the Gibbs sampler enable

calculation of marginal posterior densities but it also enables routine calculation of

expectations such as those described above.

Since our emphasis here is on expectations, in the next section we review existing

approaches both analytic and numerical. In the third section we briefly review the Gibbs

sampler followed by the development of its application to calculating expectations. In

Section 4 we provide a variety of illustrative applications. We conclude in Section 5 with a

brief summary.

2. Existing Approaches for Posterior Expectations

With regard to performing the required numerical integrations directly there have

been several recent advances (see e.g. Naylor and Smith 1982. 1988. Smith et al 198.5.

1987). As noted in the introduction, implementation requires both numerical expertise and

highly sophisticated software. These approaches employ quadrature methods, are typically

most successful in integrating functions which are of the form "polynomial x normal

density" and will usually not accommodate more than six dimensions. (Of course

insightful manipulation of joint distributions can frequently reduce higher dimensional

problems to forms requiring at most six dimensional integration).

An alternative direction for numerical integration has been through Monte Carlo

methods as in the work of Stewart (1983, 1984), Van Dijk and Kloek (1980, 1984) and

Shaw (1988) perhaps in its most refined form using importance sampling and variance
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reduction techniques in recent work of Geweke (1988. 1989). Recently Rubin (1987. 1988)

has proposed a sampling/importance resampling algorithm which in the context of

hierarchical models affords the advantage of simpler specification of the importance

sampling density. Again these approaches encounter difficulty with high dimensionality.

Moreover our empirical experience (see, for example, Gelfand and Smith, 1990) suggests

that the "learning" which is inherent in an iterative algorithm such as the Gibbs sampler

makes such an approach more efficient in terms of amount of random generation than

one-off (non iterative) Monte Carlo methods.

Substantial effort has been devoted to the development of analytic approximations

for calculating expectations. Most of this work involves application of Laplace's method

(see e.g. DeBruijn, 1961). Writing these expectations as a ratio of integrals and

approximating numerator and denominator separately Tierney and Kadane (1986) obtain a

second order approximation for the expectation of positive functions. Other second order

expansions (Hartigan 1965, Johnson 1970, Lindley 1961, 1980) require computation of more

derivatives of the log likelihood function. Extension of the Tierney-Kadane approach to

nonpositive functions is discussed in Tierney, Kass and Kadane (1989a). Kass and Steffey

(1988) study these approximations in the context of conditionally independent hierarchical

models. Density approximations based on the Laplace method appear in Tierney and

Kadane (1986) with extensions in Tierney, Kass and Kadane (1989b). A related

approximation appears in Hsu, Leonard and Tsui (1987). Work of Achcar and Smith

(1989) shows that performance of the Laplace method is often very sensitive to

parametrization. Morris (1988) offers expansions based on Pearson family kernels rather

than the normal kernels used in the Laplace method.

Apart from the sometimes severe sensitivity to parametrization (see Section 4) these

approaches require at least one and usually two function maximizations which often

demand expertise and are at best cumbersome. In addition, these functions must

be assumed twice differentiable. Moreover a separate function maximization
I



is required for each exectation sought. These problems are maznified with increasinz

dimensionalitv.

Since the Laplace method has received much attention of late its performance alone

with that of the Gibbs sampler will be investigated in Section 4. We thus brieflv review

the method encouraging the reader to consult Kass. Tierney and Kadane (1988) for a fuller

account.

Consider a set of random variables U = (1U1,. •.Uk). Our interest is in calculating

E f(U). Suppose f>O and suppose the joint density of U1,-.., Uk is only known modulo

normalizing constant i.e. is proportional to g(U". ,Uk). Then E(f) =

f f-g fe- ?fU~N 1

- = -T- I- Jep l(-

fg fe

where I = -log g, t1 = I-log f, t is the mode of 1, is the mode of t*, E and are

minus the inverse Hessians of t and t' evaluated at U and U* respectively. The form

(1) first appeared in Tierney and Kadane (1986) who noted that when log g = 0(n) this

approximation is then accurate to order n-2

Tierney, Kass and Kadane (1989a) suggest extending (1) to handle nonpositive f

by approximating the moment generating function of f, E(exp isf)), and then

differentiating at s=O. Alternatively we may add a large constant c to f such that

c+f>O, apply (1) to c+f, and then subtract c from the resulting approximation. If c

needs to be infinite we regain the approximation based on the moment generating function.

Let hs E E(f(U)IUr,rts). If the joint density of the Ur,rts is proportional to a

known function say gs(Ur, r=1, .. k, rts) then, since E(f)=E(hs), E(f) =
f hsgf fe- I E~s_ f -ets

e Sfh g 5 fe Er I 2
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where is, f* etc. are defined analogous to (1). We see that 2) replaces the approximation

of a ratio of k-fold integrals with the approximation of a ratio of (k-i I-fold integrais and

thus should provide a better approximation than 1 1). Hierarchical Baves models provide a

class of probability structures where approximation (2) can usually be carried out (see Kass

& Steffey, 1989).

3. Gibbs Sampling

3.1 Review of the Gibbs Sampler

In the sequel we assume the existence of densities with respect to either Lebesque or

counting measure as appropriate. Densities will be denoted, generically, by square brackets

so that joint, conditional and marginal forms appear. respectively, as [U,V] [U IV] and IV].

The usual marginalization by integration procedure will be denoted by forms such as

[U] = fuIvv]-V]

We shall require that our collections of random variables are such that specification of all

full conditional distributions uniquely determines the full joint density (see Besa-. 1974).

More precisely, for such a collection of random variables U1 , U2 , ... U. the joint density.

[U,, -,..Uk], is assumed uniquely determined by UslUr. r~s]. s=l.2.--.k. Our

interest is in the marginal distributions, [Us,], s=l,2,.- .k.

An algorithm for extracting marginal distributions from the full conditional

distribution was formally introduced as the Gibbs sampler in Geman and Geman (1984).

The algorithm requires all the full conditional distributions to be "available" for sampling.

where "available" is taken to mean that, for example, Us can be generated

straightforwardly and efficiently given specified values of the conditioning variables. Ir,

rs. We return to this matter at the end of this section.



Gibbs sampling is a Markovian updating scheme which proceeds as foilows. tiv(,11
1, [ Y, draw U ' - -u,

An arbitrarv startin, <et of values U .. wedraw UI, from A'i l '"
nfm 21U 3, .,k ... and so on up to from

ILkU ' I,..,I'. l] to complete one iteration of the scheme. After t such iterations we

would arrive at (U t).... , t ). Geman and Geman show under mild conditions that

(, *U, - (U, *,Uk)- [U1, U2, Uk] as t-,o. Hence for t large enoughU ( t ) ...

US) for example will be regarded as a simulated observation from [Us]. Replication ofs

the process m times yields m iid k-tuples (U , ' j=1 .. Diagnostics to

assess convergence are critical. Some tentative discussion appears in Gelfand et al (1989)

but a fuller account is deferred to a future paper. Note that sample size at say the tth

iteration may be increased from m to any specified size by sampling with replacement

t) TI 0t) j= .from the vectors (U11 ,.., k ).,kij,

Application in the Bayesian framework takes the U6  to be unobservable

representing either parameters or missing data. All distributions will be viewed as

conditional on the observed data. [U1,.. -Uk] becomes the joint posterior density whose

form is therefore known modulo normalizing constant. There is no question as to whether

the full conditional densities uniquely determine the joint density: the full conditional

densities will have been obtained from the form of the joint density functions. Functions.

UW,...-.U ,), whose density and expectation we seek will arise as interesting functions of

the parameters.

We conclude this section with a remark regarding the required generation from full

conditional distributions. In a hierarchical Bayesian model the full conditional

distributions take reduced forms (see Gelfand and Smith. 1990, Section 3.2). In particular

if conjugacy is assumed for the distribution at a given pair of adjacent stages say i.i+1, in

the hierarchy then the full posterior at stage i+1 is an updated version of the prior at

stage i+1 whence sampling is usually straightforward. If conjugacy is not assumed then

the full posterior for any parameter will still be known modulo normalizing constant. In



this case more sophisticated random generation using for example the ratio of uniforms

method (see e.g. Devrove. 1986) still enables sampling from the full posterior.

3.2 Calculating Expectations

Since the iid vectors (UUi , ki ) are approximately distributed as (U1,.- -,Uki

we can in principle create sample based estimates of the marginal densities of any subset of

the U's or indeed of any transformation of the U's using kernel density estimators (see e.g.

Silverman, 1986). In the same spirit an obvious sample based estimator of the expected

value of an integrable function f(Ui,....Uk) takes the form

m
r l T t (t)", ,'" ,Uk )/ (3)

j=l ' kj

We now show that in all such enterprise it behooves us to take advantage, when

possible, of availability of the full conditional densities to improve our estimation. As in

the previous section, for any s, E f(U 1,. .- ,Uk) = E(hs) where h, = E(fIUr, rts). But

var(f) _ var(h6 ). Hence the estimator

m W
E hs(U c t , rts)/m (4)rj

j=l

is better than (3) in terms of mean squared error. In fact the "Rao-Blackwellized"

estimator (4) is better than (3) under more general loss functions (see e.g. Ferguson 1967.

p. 121). We typically take advantage of this Rao-Blackwellization by using m smaller

than would be required under (3). We note that (3) and (4) are sampling analogues of (1)

and (2) respectively and that (2) may be viewed as a Rao-Blackwellized version of (1).

We also note that the sampling based approach does not require smoothness or

differentiability for f and h6 allowing application to for example f=max Ui.



With regard to density estimation again if V, appears as an argument of f The

conditional density 'f! Ur, r-s can be obtained by univariate transformation from I" Vr.

r~s1. The resulting Rao-Blackwellized sample-based density estimate of f would be

m[f], = E [f IU r sj /
j=1

Note that we need not modify the Gibbs sampler so as to sample f's in order to

calculate E(f) or to estimate [f]. Note further that the forms (3), (4) and (5) are invariant

under 1-1 transformation of the individual Vi. Hence, in practical calculation of

expectations using the Gibbs sampler, transformation of the parameters is not an issue as it

is for the Laplace method.

By using the full conditional distribution of each variable which actually appears as

an argument of f, the form (4) may, in principle, be used to obtain several estimators

which improve upon (3). Similarly, several density estimators of the form (5) can be

obtained. While adaptive combination of such estimators might be attempted (say by

approximating the variance of each estimator through the delta-method or through a

sample reuse method) we suggest the simple unweighted average. The variance

components example in Section 4.2 provides an illustration.

A related point involves the use of reduced conditional distributions and

expectations when available to improve estimation. We make the argument in its simplest

form taking k=3. To calculate E(Ut) suppose both h(U,,U 3 )=E(U, I U9 ,U3 ) and

W(U2 )=E(U1 U2 ) are known in closed form. Since E(hI U,)=EW, Rao-Blackwellization
m m

shows that M W(U 21 ) is better than m h"2j U,3j ). This point concurs with

j=1 j=1

our intuition regarding Monte Carlo integration for a fixed number of independent points,

m - we can approximate a single integral better than a double integral. This situation

typically arises in the context of missing data. For instance in the aggregated multinomial



,-xanipie of section 4.! the reduced conditional distributions 0 Y.Z, ana i, tre

:nmediately unscaled Beta distributions.

3.3 A Conditional Gibbs Sampler

The Gibbs sampler can be extended to yield samples from arbitrary conditionai

distributions as follows. Suppose we fix a subset of the Ur's, without loss of generality say

Uk, ,Uk at uk/, '..,uk respectively. In implementing the Gibbs sampler suppose a
complete iteration is achieved by updating only U1,'''.Uk. That is. starting with

(U1  "',U, "Uk' , "'Uk) we draw U1  [U'IU 2 = U2 ,''k' k' t

lk , ''' k = UkJ U k ,  - [Uk, I .U , k/-1, k, l, = UkV i, k = Ik

number of such iterations. t--, (U', ) . k( ' (U1, UP) [Ul 1. *Uk/1Uk' 4

uk't, Uk k]. Repeating this process m times yields (U',. -.. U'), -=, m an

iid sample having approximately this conditional distribution.

Estimation would then proceed as in Section 3.2. For instance a Rao-Blackwellized

density estimate for [U21U1 = u1 ] would be developed holding U1 fixed at u in the

Gibbs sampler and would take the form

[fiiUl= 1ii] = - [U 2 1UI=ii1 . I'r=iT , r>
j=1

A Rao-Blackwellized estimate for E(U 2 1 Ui=ui) would take the form

m
v E(U 2 1 U1=u1 , Ur=uj . r>2)/m (7)

j=l
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4. Illustrative Examples

In this section we illustrate the methodology of Section 3 in the context .,i three

examples chosen to reflect different types of "awkward" structure where the Gibbs sampler

provides an easily implemented solution.

4.1. An Aggregated Multinomial Model

Gelfand and Smith (1990) discuss a fictitious data set where some observations are

not assigned to individual cells but to aggregates of cells (see e.g. Hartley. 1958; Dempster,

Laird & Rubin 1977, Tanner & Wong, 1987). In fact suppose the data Y=(Y,.".Y 5 ) =

(14,1,1,1,5) are available as a sample from the multinomial distribution

Mult (22; 0 + , j 0, i + q, (1-0-/))

and that, as a prior for (0,rl), we take Dirichlet (1,1,1). By considering instead a "split

cell" multinomial of the form

X=(X,,.. ,X7 ) - Mult(22;1 0, 0, j 7, 7, ' (q-0-))

we view X1, X5 as missing data and construct a Gibbs sampler involving 0. rl and Z=( X.

X,). The required full conditional distributions are

[OY,q,Z] = (1-ql) Be (Xi + Y2+1. Y5+1) (8)

[77 Y,O,Z] = (1-0) Be (Y 3 + X5+1, Y5+) (9)

and

[ZY,0,]] = [X,, X 5fY,0,7] = Bi (Y,, 20(1+20)') . Bi (Y4, 27(3+27)-')

Using "exact" numerical methods (Naylor and Smith, 1982) we obtain

E[OIY] = .5199, E[771Y] = .1232. The Tierney-Kadane approximation (1) on the (0,77)

scale yields E(01Y) % .5175 and E(r 71Y) u .0882 resulting in relative errors of .5% and
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23.4% respectively. Under an alternative parameterization (for exampie tlhe i)it is

onsidered in Achcar and Smith, 1989) we migl7. fare better with E( r NE

For the sampilin based approaches in addition we considered E( ! Y, E( 1)2"N,

var(01 N') and varqj' Y). a total of six expectations. Simulation is required to study the

performance of these approaches. We obtained .5000 repetitions of the Gibbs sampler

where for each repetition we took only 10 iterations and set m to be only 20. For each

repetition we calculated estimates of the six expectations using the form (3) and using the

form (4), for the later employing (8) or (9) as appropriate. For instance, for E(01 Y) the

20
estimator of the form (3) is E 0jl /20 while the estimator of the form i4) employing

j=l
20

(8) is - dj/20 where dj = (1 - qj 10) + Y2 + 1)(Xij + Y2 + Y5 + 2) ' For
j--I

20
var(91Y) the estimator of the form (3) is E ( -/20 where ( is the

j=l

average of the 0 . But since

var(91Y) = E(var(0IY,q,Z)) + var E(91VYa,Z) (10)

we can use var(91Y,R,Z) from (8) to obtain an estimator of the form (4) for the first term

on the right hand side of (10). For the second term on the right hand side we use the

(stimator E(dj - d)2 /19 where d = Ei/20.

For both of the estimators of each of the six expectations over the 5000 replications

we calculated the average, the average bias, the variance and the mean square error. In all

cases bias was inconsequential in the sense that mean square error agrees with variance to

at least three significant places. Hence in Table 1 we present, for each expectation the

"exact" value, the average value using the form (3) estimator with associated standard

error in parentheses and the average value using form (4) estimator with associated

standard error in parentheses. The performance of the Gibbs sampler is remarkably good

especially given such small t and m. In practice, by the last iteration. it would typically

be >1000 yielding SE's at most one-tenth of those shown. As it is, for, say E[7l Y] using



'he estimator of form (4) virtually all estimates fell in the interval i.122S. .12361. Note
also the benefit of "Rao-Blackwellizing'. In all cases the standard error of the form 12

estimators is at most 58% cf the corresponding form (1) estimator. Thus the NISE's of the

Rao Blackwellized estimators are at most 35% their non-conditional counterparts.

[INSERT TABLE 1 HERE]

4.2 A Variance Components Model

Box and Tiao (1973, Chapter 5) present a set of dyestuff data wherein five samples

of six randomly chosen batches of raw material were taken and a single laboratory

determination of product yield was made for each of the resulting 30 samples. If Yqj

denotes the yield of the jth sample from the ith batch, i=i,. .. 6. j=l, .,5 then we

define a variance components model for Yij by Yij = Oi + cij where, assuming

conditional independence throughout, [9 i jp,a]1 = N(, o), [ iji oe] N(0,a2). Given Oi

and o2, for the ith batch Yi and S2 are sufficient and thus we summarize the data as

Batch 1 2 3 4 5 6

Y. 1505 1528 1564 1498 1600 1470

Si  63.05 33.28 37.98 68.70 50.00 :31.02

The usual ANOVA estimate of a2 is 1764.05. of a e is 2451.25. Let Y denote {Yij},

2 2
let O3=(01,.. ,02) and assume that /1, o  and oe are independent with priors

= N(to), [i ] = IG(al,bi) and (OlJ = IG(a 2,b2) where IG denotes the inverse
2

Gamma distribution and po,ao, al,bl,a2,b2 are assumed known. For illustrative purposes

2 12
we take the rather vague specifications po=O, a 0=10 , ai=0, b1=l. a=0.b2=l. The

Gibbs sampler involves a.o, a, p and (. The required full conditional distributions are



.:1

Y.s'.0..or} = IG (3.5. 1000 + .5)v(Oi-p") i

2 y',U ). 0,, 5.. :
- 12)

[,IY. .ao2,,] = N(E O /6)

[2y, 21,e = N ((o+a) '(5a 2 + 2 5or 2

where Y'=( -1,' S), 1 is a 6x1 column of l's and I is a 6,6 identity matrix.

Interest typically focuses on the distributions io'I Y]. [a2 I Y] and [2, o2 I' Y]. The

marginal distribution distributions are straightforwardly handled using estimates of the

form (5) and have been created for a different and in fact more difficult data set in Gelfand

et al (1989). With regard to expectations we consider E(a'IY). E(a2 IY) and

E(C2/ae2Y). Using "exact" numerical methods (Naylor and Smith. 1982) these

expectations are 2496.6, 2879.4, and 1.019 respectively. Using the Tierney-Kadane

approximations (1) on the (ae,a2) scale yields very poor estimates. E( 0,Y) .5378.5.

E(or I Y) = 6393.9, and E(/o/,e) = 1.044. Achcar and Smith (1989) report a less severe

but similar finding and recommend a log transformation of the variance components. (In

fact. the exact answers above were obtained working with log scales). Unfortunately on

the log scale the results are not much better: E(a 21 y) = 1679.7, E(a 2,'Y) = :1669.0 and

E(02/ OY) = 2.959.

In addressing the performance of the Gibbs sampler we focused on E(ae/a ,2Y).

Using a simulation based on 5000 repetitions with t=60, m=50 at each repetition. we

examined four estimators:

50 2 (30)
-estimator I is of the form (3) i.e. ( E rl, /(,/

j=1 aej



50 1O00+E O i'j - ;

-estimator 2 is of the form (4) using (11) i.e. , 0 /50j = 2 . ji (

1 3 0'15 0 1 o, 0
- estimator 3 is of the form (4) using (12) i.e. E + /.lj=l 4F_,5 + ,-)zi'-ijj

- estimator 4 is the unweighted average of estimators 2 and 3.

The brief Table 2 reports the exact value along with the average value and standard

error for each of the four estimators. The performance of the Gibbs sampler is quite good

especially since m is still much smaller than we would use in practice. While. after the

fact, estimator 3 performs better than estimator 2 (one had to be better than the other!), in

the absence of such knowledge estimator 4 seems a satisfactory choice. As a matter of

record this simulation yielded for E(a 21Y) an average value of 2500.1 with standard error

322.8, for E(a2 IY) an average value of 2877.8 with standard error 85.7. Again. in

practice. a much larger m would be used. As noted in Section 3 transformations need not

be considered.

INSERT TABLE 2 HERE

Note that if interest was in the intra-class correlation coefficient. aO/(

may straightforwardly obtain Rao-Blackwellized density estimates for [eo /( o+Oe)IYj

using (5). However in calculating E(o2/(62+62 ),Y) only an estimator of the form (3) is

readily available.

4.3 A Normal-4inear Hierarchical Model

A widely used version of the normal-linear hierarchical model introduced by

Lindley and Smith (1972) takes the following general form. Data on the ith of k
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individuals is modeled by [Y I0i ,J2 = N(X i a ,i l )
2 1 with the individual parameters 0i

themselves modeled by i i'i , = N(p,, conditional independence for i=l.. .. k hein

assumed throughout. The Bayesian modeling is then completed bv assumina,
22

independently, that jij=N(iq,C), [E- 1=W((pR)1 .p) and [0r]=G( W,0. , o7 ). Here. W

and IG denote Wishart and inverse-gamma distributions. respectively. Typical

applications of such a model are to population random effects studies (see. for example.

Racine-Poon and Smith, 1989).

In such cases, the [Y1 I 0,Ia2 describe ni individual measurements (e.g. growth over

time/response to dose), the k regression coefficients 0i characterize the individual growth

or response pattern and the [0i Ip, A j) reflect the fact that the k individuals are a random

sample from a population. A variety of Bayesian and empirical Bayesian procedures have

been proposed for making inferences about 0i , j, L a2, but exact calculations have hitherto

proved infeasible, largely due to the presence of the unknown population covariance matrix

'. Discussion and illustration of inferences and predictions for such hierarchical models is

given in Gelfand et. al. (1989). Here we simply indicate how the Gibbs sampler provides a

straightforward and easily implemented approach to the general problem of estimating K

k k 2T

Defining Y=(Y 1,'",Yk), 9=(0I,''"0k), #-k' ' n= E ;, D:= XiXi= l '--

Z'. V=(kE "+C" )'. the Gibbs sampler is easily seen to take the form (suppressing

explicit dependence on q,C,pR.,oro)

[ Y ' 2] = N(Di(a 2 XTYi +K'p),Di ) (i=l,..-.k)

[piYOl ,u2 ] - N(V(k 10#+C- 1),V)

[E IV',qpu1 = W([p(0-p)(pi -A)T+pR]1, k+p) (13)

[o I Y,0,pZ'] = IG( (n+vo), [.(Yi -X i 0i )T(Y 0X i Vj)+vo rT).

Simulation from the N and IG distributions is immediate; simulation from the NV

distribution is straightforwardly accomplished using the algorithm of Odell and Feiveson

(1966). Estimation of E (via Z9 ) using the form (4) is directly achieved using the mean of
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(13). As an indication of the computing effort required. for an exampie with k=30. ni =5

and X i 0, having the form of a straight-line growth curve (so that 0.j4,Va 2 ;_VoIveS a total

of 66 parameters), satisfactory convergence (checked by empirical Q-Q plots for the

eigenvalues of V-) was obtained at t=25 with m=100.

5. Discussion

Our general discussion and the three illustrative examples reveals the ease with

which posterior expectations can be calculated using the Gibbs sampler, even with

"awkward" model/data combinations. In particular, we note the striking advantage of the

approach in overcoming problems due to: awkward posterior surfaces, otherwise requiring

subtle and sophisticated numerical or analytic approximation tech:_iques; functions

which may not be continuous much less differentiable' dimensionality proiblems

arising from highly parameterized models; intractable distributions arising

fram missing data; "difficult" objects, such as covariance matrices, whose

coiponent parameters implicitly involve complicated constraints.

Most attractively, we need not redo the analysis for each desired expectation. All

such expectations are readily estimated from the final sample.
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Table 1: Expectations for the Aggregated Multinomial Model

Average Value of Form (3) Average Value of Form (1)
Expectation Exact Value Est i mator (S. E.) Est i mator (S. E.)
E(iIJY) .1232 .1229 (.0178) .1232 (.0082)

E(e 2 Y) .2881 .2879 (.0302) .2883 (.0171)

E(i 2 Y) .2174x101 .2158x10- (.0639x0 -') .2173x10' ,.0280x10
j )

Var(O Y)  .1776xl0 -  .1781-10 -' (.0551-10 -')  .1774x1 l  i.0218x10 )

Var(q Y) .6561x102 .6476x10 -2 (.2732x10 2 ) .6556c10-2  .0902x10-2

Table 2: The Expected Variance Ratio for the Variance Components Model

Exact Estimator 1 Estimator2 Estimator 3 Estimator 4
Value (SE) (SE) (SE) (SE)

1.019 1.095 1.086 1.028 1.057
(.098) (.091) (.022) (.039)
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